Announcements

• Final exam: Monday, April 15, 2:00-4:00 pm; Room: IC200

• Covers the whole semester

• Course evaluation (right now)
Data Dependence

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[S_4 : \quad A = B/C \]

We define four types of data dependence.

- **Flow (true) dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) computes a data value that \(S_j \) uses.
- Implies that \(S_i \) must execute before \(S_j \).

\[S_i \delta^+ S_j \quad (S_1 \delta^+ S_2 \quad \text{and} \quad S_2 \delta^+ S_4) \]
Data Dependence

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[S_4 : \quad A = B/C \]

We define four types of data dependence.

- **Anti dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) uses a data value that \(S_j \) computes.
- It implies that \(S_i \) must be executed before \(S_j \).

\[S_i \rightarrow^a S_j \quad (S_2 \rightarrow^a S_3) \]
Data Dependence

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[S_4 : \quad A = B/C \]

We define four types of data dependence.

- **Output dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) computes a data value that \(S_j \) also computes.

- It implies that \(S_i \) must be executed before \(S_j \).

\[S_i \circ S_j \quad (S_1 \circ S_3 \quad \text{and} \quad S_3 \circ S_4) \]
Data Dependence

\[\begin{align*}
S_1 : & \quad A = 1.0 \\
S_2 : & \quad B = A + 2.0 \\
S_3 : & \quad A = C - D \\
S_4 : & \quad A = B / C \\
\end{align*} \]

We define four types of data dependence.

- **Input dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) uses a data value that \(S_j \) also uses.

- Does this imply that \(S_i \) must execute before \(S_j \)?

\[S_i \delta^I S_j \quad (S_3 \delta^I S_4) \]
Data Dependence (continued)

• The dependence is said to **flow** from S_i to S_j because S_i precedes S_j in execution.

• S_i is said to be the **source** of the dependence. S_j is said to be the **sink** of the dependence.

• The only “true” dependence is flow dependence; it represents the flow of data in the program.

• The other types of dependence are caused by programming style; they may be eliminated by re-naming.

\[
\begin{align*}
S_1: & \quad A = 1.0 \\
S_2: & \quad B = A + 2.0 \\
S_3: & \quad A1 = C - D \\
S_4: & \quad A2 = B/C
\end{align*}
\]
Data Dependence (continued)

- Data dependence in a program may be represented using a **dependence graph** $G=(V,E)$, where the nodes V represent statements in the program and the directed edges E represent dependence relations.

\[
\begin{align*}
S_1 &: A = 1.0 \\
S_2 &: B = A + 2.0 \\
S_3 &: A = C - D \\
S_4 &: A = B/C
\end{align*}
\]
Value or Location?

• There are two ways a dependence is defined: value-oriented or location-oriented.

\[
\begin{align*}
S_1 & : \quad A = 1.0 \\
S_2 & : \quad B = A + 2.0 \\
S_3 & : \quad A = C - D \\
S_4 & : \quad A = B/C
\end{align*}
\]
Example 1

\[
\begin{align*}
\text{do } i = 2, 4 \\
S_1: & \quad a(i) = b(i) + c(i) \\
S_2: & \quad d(i) = a(i) \\
\text{end do}
\end{align*}
\]

- There is an instance of \(S_1 \) that precedes an instance of \(S_2 \) in execution and \(S_1 \) produces data that \(S_2 \) consumes.
- \(S_1 \) is the source of the dependence; \(S_2 \) is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0. The dependence direction is =.

\[S_1 \delta^t S_2 \quad \text{or} \quad S_1 \delta^0 S_2 \]
Example 2

\begin{itemize}
 \item There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 consumes.
 \item S_1 is the source of the dependence; S_2 is the sink of the dependence.
 \item The dependence flows between instances of statements in different iterations (loop-carried dependence).
 \item The dependence distance is 1. The direction is positive ($<$).
\end{itemize}

\[S_1 \delta^<_1 S_2 \quad \text{or} \quad S_1 \delta^+_1 S_2 \]
Example 3

\[
\text{do } i = 2, 4 \\
S_1: \quad a(i) = b(i) + c(i) \\
S_2: \quad d(i) = a(i+1) \\
\text{end do}
\]

- There is an instance of \(S_2 \) that precedes an instance of \(S_1 \) in execution and \(S_2 \) consumes data that \(S_1 \) produces.
- \(S_2 \) is the source of the dependence; \(S_1 \) is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1.

\[S_2 \delta^a_1 S_1 \quad \text{or} \quad S_2 \delta^a \preceq S_1 \]

- Are you sure you know why it is \(S_2 \delta^a_1 S_1 \) even though \(S_1 \) appears before \(S_2 \) in the code?
Example 4

do i = 2, 4
do j = 2, 4
S: \quad a(i,j) = a(i-1,j+1)
end do
end do

- An instance of S precedes another instance of S and S produces data that S consumes.
- S is both source and sink.
- The dependence is loop-carried.
- The dependence distance is \((1,-1)\).

\[S \delta^t_{(1,-1)} S \quad \text{or} \quad S \delta^t_{(<,>)} S \]
Problem Formulation

- Consider the following perfect nest of depth d:

$$
\begin{align*}
\text{do } I_1 &= L_1, U_1 \\
\text{do } I_2 &= L_2, U_2 \\
\quad &\quad \ldots \\
\text{do } I_d &= L_d, U_d \\
&\quad a(f_1(I), f_2(I), \ldots, f_m(I)) = a(g_1(I), g_2(I), \ldots, g_m(I)) \\
&\quad \text{enddo} \\
&\quad \text{enddo} \\
&\quad \text{enddo}
\end{align*}
$$

- Let $I = (I_1, I_2, \ldots, I_d)$
- Let $L = (L_1, L_2, \ldots, L_d)$
- Let $U = (U_1, U_2, \ldots, U_d)$
- $L \leq U$
- Let $b_0 + b_1 I_1 + b_2 I_2 + \ldots + b_d I_d$
Problem Formulation

- Dependence will exist if there exists two iteration vectors k and j such that $\underline{k} \leq k \leq j \leq \bar{U}$ and:

\[
\begin{align*}
\text{and} & \quad f_1(k) = g_1(j) \\
\text{and} & \quad f_2(k) = g_2(j) \\
\text{and} & \quad f_m(k) = g_m(j)
\end{align*}
\]

- That is:

\[
\begin{align*}
\text{and} & \quad f_1(k) - g_1(j) = 0 \\
\text{and} & \quad f_2(k) - g_2(j) = 0 \\
\text{and} & \quad f_m(k) - g_m(j) = 0
\end{align*}
\]
Problem Formulation - Example

\[
\begin{align*}
do i &= 2, 4 \\
S_1 &: \quad a(i) = b(i) + c(i) \\
S_2 &: \quad d(i) = a(i-1) \\
\end{align*}
\]

end do

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that \(2 \leq i_1 \leq i_2 \leq 4 \) and such that:

\[
i_1 = i_2 - 1?
\]

- Answer: yes; \(i_1 = 2 \) & \(i_2 = 3 \) and \(i_1 = 3 \) & \(i_2 = 4 \).

- Hence, there is dependence!

- The dependence distance vector is \(i_2 - i_1 = 1 \).

- The dependence direction vector is \(\text{sign}(1) = < \).
Problem Formulation - Example

\[
\begin{align*}
\text{do } i &= 2, 4 \\
S_1 &: \quad a(i) &= b(i) + c(i) \\
S_2 &: \quad d(i) &= a(i+1)
\end{align*}
\]

end do

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that
 \(2 \leq i_1 \leq i_2 \leq 4 \) and such that:

 \[i_1 = i_2 + 1? \]

- Answer: yes; \(i_1 = 3 \) & \(i_2 = 2 \) and \(i_1 = 4 \) & \(i_2 = 3 \). (But, but!).

- Hence, there is dependence!

- The dependence distance vector is \(i_2 - i_1 = -1 \).

- The dependence direction vector is sign(-1) = >.

- Is this possible?
Problem Formulation - Example

do i = 1, 10
S_1: \quad a(2*i) = b(i) + c(i)
S_2: \quad d(i) = a(2*i+1)
end do

• Does there exist two iteration vectors i_1 and i_2, such that
1 \leq i_1 \leq i_2 \leq 10 and such that:

2*i_1 = 2*i_2 +1?

• Answer: no; 2*i_1 is even \& 2*i_2 +1 is odd.
• Hence, there is no dependence!
Problem Formulation

• Dependence testing is equivalent to an **integer linear programming** (ILP) problem of 2d variables & m+d constraint!

• An algorithm that determines if there exits two iteration vectors \vec{k} and \vec{j} that satisfies these constraints is called a **dependence tester**.

• The dependence distance vector is given by $\vec{j} - \vec{k}$.

• The dependence direction vector is give by $\text{sign}(\vec{j} - \vec{k})$.

• Dependence testing is NP-complete!

• A dependence test that reports dependence only when there is dependence is said to be **exact**. Otherwise it is **in-exact**.

• A dependence test must be **conservative**; if the existence of dependence cannot be ascertained, dependence must be assumed.
Dependence Testers

• Lamport’s Test.
• GCD Test.
• Banerjee’s Inequalities.
• Generalized GCD Test.
• Power Test.
• I-Test.
• Omega Test.
• Delta Test.
• Stanford Test.
• etc...
Lamport’s Test

• Lamport’s Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

\[A([], b \cdot i + c_1, []) = [] \]

\[[] = A([], b \cdot i + c_2, []) \]

• The dependence problem: does there exist \(i_1 \) and \(i_2 \), such that \(L_i \leq i_1 \leq i_2 \leq U_i \) and such that

\[b \cdot i_1 + c_1 = b \cdot i_2 + c_2 \quad \text{or} \quad i_2 - i_1 = \frac{c_1 - c_2}{b} \]

• There is integer solution if and only if \(\frac{c_1 - c_2}{b} \) is integer.

• The dependence distance is \(d = \frac{c_1 - c_2}{b} \) if \(L_i \leq |d| \leq U_i \).

• \(d > 0 \) \Rightarrow \text{true dependence.}\]

\[d = 0 \Rightarrow \text{loop independent dependence.} \]

\[d < 0 \Rightarrow \text{anti dependence.} \]
Lamport's Test - Example

\[
\text{do } i = 1, \ n \\
\text{do } j = 1, \ n
\]

\[
S: \quad a(i,j) = a(i-1,j+1)
\]

\[
\text{end do}
\]

\[
\text{end do}
\]

\[
i_1 = i_2 - 1? \quad \text{or} \quad j_1 = j_2 + 1?
\]

\[
b = 1; \ c_1 = 0; \ c_2 = -1 \quad \text{or} \quad b = 1; \ c_1 = 0; \ c_2 = 1
\]

\[
\frac{c_1 - c_2}{b} = 1 \quad \text{or} \quad \frac{c_1 - c_2}{b} = -1
\]

There is dependence. Distance (i) is 1.

There is dependence. Distance (j) is -1.

\[
S_{\delta_{(1,-1)}}^t S \quad \text{or} \quad S_{\delta_{(<,>)}^t} S
\]
Lamport’s Test - Example

do i = 1, n
 do j = 1, n
 S: \(a(i,2^j) = a(i-1,2^{j+1}) \)
 end do
 end do

\(i_1 = i_2 - 1? \)
\(2\cdot j_1 = 2\cdot j_2 + 1? \)

\(b = 1; c_1 = 0; c_2 = -1 \)
\(b = 2; c_1 = 0; c_2 = 1 \)

\(\frac{c_1 - c_2}{b} = 1 \)
\(\frac{c_1 - c_2}{b} = \frac{1}{2} \)

There is dependence.
There is no dependence.

Distance (i) is 1.

There is no dependence!
GCD Test

• Given the following equation:

\[\sum_{i=1}^{n} a_i x_i = c \]

\(a_i \)'s and \(c \) are integers

an integer solution exists if and only if:

\[\text{gcd}(a_1, a_2, \ldots, a_n) \text{ divides } c \]

• Problems:
 – ignores loop bounds.
 – gives no information on distance or direction of dependence.
 – often \(\text{gcd}(\ldots) \) is 1 which always divides \(c \), resulting in false dependences.
GCD Test - Example

\[
\text{do } i = 1, 10 \\
S_1: \quad a(2*i) = b(i) + c(i) \\
S_2: \quad d(i) = a(2*i-1) \\
\text{end do}
\]

• Does there exist two iteration vectors \(i_1\) and \(i_2\), such that \(1 \leq i_1 \leq i_2 \leq 10\) and such that:

\[
2*i_1 = 2*i_2 - 1?
\]

or

\[
2*i_2 - 2*i_1 = 1?
\]

• There will be an integer solution if and only if \(\text{gcd}(2,-2)\) divides \(1\).

• This is not the case, and hence, there is no dependence!
GCD Test Example

\[
\text{do } i = 1, 10 \\
S_1: \quad a(i) = b(i) + c(i) \\
S_2: \quad d(i) = a(i-100) \\
\text{end do}
\]

- Does there exist two iteration vectors \(i_1\) and \(i_2\), such that \(1 \leq i_1 \leq i_2 \leq 10\) and such that:

 \[i_1 = i_2 -100?\]

 or

 \[i_2 - i_1 = 100?\]

- There will be an integer solution if and only if \(\text{gcd}(1,-1)\) divides 100.

- This is the case, and hence, there is dependence! Or is there?
Dependence Testing Complications

• Unknown loop bounds.

\[
\begin{align*}
 & \text{do } i = 1, N \\
 & S_1: \quad a(i) = a(i+10) \\
 & \text{end do}
\end{align*}
\]

What is the relationship between \(N \) and 10?

• Triangular loops.

\[
\begin{align*}
 & \text{do } i = 1, N \\
 & \quad \text{do } j = 1, i-1 \\
 & S: \quad a(i,j) = a(j,i) \\
 & \quad \text{end do} \\
 & \text{end do}
\end{align*}
\]

Must impose \(j < i \) as an additional constraint.
More Complications

• User variables

\[
\begin{align*}
\text{do } i &= 1, 10 \\
S_1: & \quad a(i) = a(i+k) \\
\text{end do} & \quad \text{do } i = L, H \\
S_1: & \quad a(i) = a(i-1) \\
\text{end do} & \quad \text{do } i = 1, H-L \\
S_1: & \quad a(i+L) = a(i+L-1) \\
\text{end do}
\end{align*}
\]

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).
More Complications: Scalars

\[
\begin{align*}
\text{do } i &= 1, N \\
S_1 &: \quad x = a(i) \\
S_2 &: \quad b(i) = x \\
\text{end do}
\end{align*}
\Rightarrow
\begin{align*}
\text{do } i &= 1, N \\
S_1 &: \quad x(i) = a(i) \\
S_2 &: \quad b(i) = x(i) \\
\text{end do}
\end{align*}
\]

\[
\begin{align*}
 j &= N-1 \\
\text{do } i &= 1, N \\
S_1 &: \quad a(i) = a(j) \\
S_2 &: \quad j = j - 1 \\
\text{end do}
\end{align*}
\Rightarrow
\begin{align*}
\text{do } i &= 1, N \\
S_1 &: \quad a(i) = a(N-i) \\
\text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{sum} &= 0 \\
\text{do } i &= 1, N \\
S_1 &: \quad \text{sum} = \text{sum} + a(i) \\
\text{end do}
\end{align*}
\Rightarrow
\begin{align*}
\text{do } i &= 1, N \\
S_1 &: \quad \text{sum}(i) = a(i) \\
\text{end do} \\
\text{sum} &+= \text{sum}(i) \quad i = 1, N
\end{align*}
\]
Serious Complications

• Aliases.
 – Equivalence Statements in Fortran:

    ```
    real a(10,10), b(10)
    
    makes b the same as the first column of a.
    ```

 – Common blocks: Fortran’s way of having shared/global variables.

    ```
    common /shared/a,b,c
    :
    :
    
    subroutine foo (...) 
    common /shared/a,b,c
    
    common /shared/x,y,z
    ```
Loop Parallelization

• A dependence is said to be **carried** by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is **loop-independent**.

```plaintext
do i = 2, n-1
    do j = 2, m-1
        a(i, j) = ...
        ...
        = a(i, j)
        b(i, j) = ...
        ...
        = b(i, j-1)
        c(i, j) = ...
        ...
        = c(i-1, j)
    end do
end do
```
Loop Parallelization

A dependence is said to be **carried** by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is **loop-independent**.

\[
\begin{align*}
\delta_{\cdots}^{+} & \\
& \text{do } i = 2, n-1 \\
& \quad \text{do } j = 2, m-1 \\
& \quad \quad a(i, j) = \ldots \\
& \quad \quad \ldots = a(i, j) \\
& \quad b(i, j) = \ldots \\
& \quad \quad \ldots = b(i, j-1) \\
& \quad c(i, j) = \ldots \\
& \quad \quad \ldots = c(i-1, j) \\
& \quad \text{end do} \\
& \text{end do}
\end{align*}
\]
A dependence is said to be *carried* by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is *loop-independent*.

\[
\begin{align*}
\text{do } i &= 2, \, n-1 \\
\text{do } j &= 2, \, m-1 \\
a(i, j) &= \ldots \\
\ldots &= a(i, j) \\
\end{align*}
\]

\[
\delta^+_{=,\prec} \quad \begin{align*}
b(i, j) &= \ldots \\
\ldots &= b(i, j-1) \\
\end{align*}
\]

\[
\begin{align*}
c(i, j) &= \ldots \\
\ldots &= c(i-1, j) \\
\end{align*}
\]

end do
end do
Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

\[
\begin{align*}
d do & \ i = 2, \ n-1 \\
& \ do \ j = 2, \ m-1 \\
& \quad a(i, j) = \ldots \\
& \quad \ldots = a(i, j) \\
& \quad b(i, j) = \ldots \\
& \quad \ldots = b(i, j-1) \\
& \delta_{<,=}^+ \quad c(i, j) = \ldots \\
& \quad \ldots = c(i-1, j) \\
& \quad \end{do}
\end{align*}
\]
Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

\[
\begin{align*}
\delta^+_{=,=} & \quad \text{a}(i, j) = \ldots \quad = a(i, j) \\
\delta^+_{=,<} & \quad \text{b}(i, j) = \ldots \quad = b(i, j-1) \\
\delta^+_{<,=} & \quad \text{c}(i, j) = \ldots \quad = c(i-1, j)
\end{align*}
\]

- Outermost loop with a non “=“ direction carries dependence!
Loop Parallelization

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!
Loop Parallelization - Example

• Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel.
• Outer loop parallelism.
Loop Parallelization - Example

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.
- Inner loop parallelism.
• Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel. Why?
• Inner loop parallelism.
Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

\[
\begin{align*}
 &\text{do } j = 1, n \\
 &\quad \text{do } i = 1, n \\
 &\quad \quad \ldots \text{a}(i,j) \ldots \\
 &\quad \text{end do} \\
 &\text{end do}
\end{align*}
\]
Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

```
do j = 1, n
  do i = 1, n
    ... a(i,j) ...
  end do
end do
```

```
do i = 1, n
  do j = 1, n
    ... a(i,j) ...
  end do
end do
```
Loop Interchange

• Loop interchange can improve the granularity of parallelism!

\[
do i = 1, n \\
\quad do j = 1, n \\
\quad \quad a(i,j) = b(i,j) \\
\quad \quad c(i,j) = a(i-1,j) \\
\quad \quad \text{end do} \\
\quad \text{end do} \\
\text{end do}
\]

\[
do j = 1, n \\
\quad do i = 1, n \\
\quad \quad a(i,j) = b(i,j) \\
\quad \quad c(i,j) = a(i-1,j) \\
\quad \quad \text{end do} \\
\quad \text{end do} \\
\text{end do}
\]
Loop Interchange

• When is loop interchange legal?
Loop Interchange

• When is loop interchange legal?
Loop Interchange

When is loop interchange legal?

```plaintext
for i = 1 to n
  for j = 1 to n
    a(i, j)
  end for
end for

doi = 1,n
  do j = 1,n
    a(i, j)
  end do
end do
```
Loop Interchange

• When is loop interchange legal? when the “interchanged” dependences remain lexiographically positive!
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

```
do t = 1,T
  do i = 1,n
    do j = 1,n
      ... a(i,j) ...
    end do
  end do
end do
```
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

\[
\begin{align*}
\text{do } & \text{ic} = 1, n, B \\
\text{do } & \text{jc} = 1, n, B \\
\text{do } & t = 1, T \\
\text{do } & i = 1, B \\
\text{do } & j = 1, B \\
\quad & \ldots \ a(\text{ic}+i-1,\text{j}c+j-1) \ldots \\
\text{end do} \\
\text{end do} \\
\text{end do} \\
\text{end do} \\
\text{end do}
\end{align*}
\]

B: Block size

control loops
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

\[
\begin{align*}
 &\text{do } \text{ic} = 1, n, B \\
 &\quad \text{do } \text{jc} = 1, n, B \\
 &\quad \quad \text{do } t = 1, T \\
 &\quad \quad \quad \text{do } i = 1, B \\
 &\quad \quad \quad \quad \text{do } j = 1, B \\
 &\quad \quad \quad \quad \quad a(\text{ic}+i-1, \text{jc}+j-1) \quad \ldots \quad \ldots \\
 &\quad \quad \quad \quad \text{end do} \\
 &\quad \quad \text{end do} \\
 &\quad \text{end do} \\
 &\text{end do} \\
\end{align*}
\]

B: Block size

jc = 1

ic = 1

control loops
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

```
do ic = 1, n, B  
  do jc = 1, n , B 
    do t = 1,T 
      do i = 1,B 
        do j = 1,B 
          ... a(ic+i-1,jc+j-1) ... 
        end do 
      end do 
    end do 
  end do 
end do
```

B: Block size
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 ... a(ic+i-1,jc+j-1) ...
 end do
 end do
 end do
 end do
 end do
end do

B: Block size

control loops

ic = 2

jc = 1
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

\[
\begin{align*}
 \text{do } & \text{ic = 1, n, B} \\
 \text{do } & \text{jc = 1, n, B} \\
 \text{do } & \text{t = 1,T} \\
 \text{do } & \text{i = 1,B} \\
 \text{do } & \text{j = 1,B} \\
 \ldots & a(\text{ic+i-1,jc+j-1}) \ldots \\
 \text{end do} \\
 \text{end do} \\
 \text{end do} \\
 \text{end do} \\
 \text{end do}
\end{align*}
\]

B: Block size

control loops
Loop Blocking (Tiling)

- When is loop blocking legal?